УДК 621.396.969.11

Д. С. Боровицкий ОАО "Российский институт радионавигации и времени" (Санкт-Петербург) В. П. Ипатов Санкт-Петербургский государственный электротехнический университет "ЛЭТИ"

Разработка гидроакустического сигнала системы позиционирования подводных объектов в условиях быстрых замираний

Предложена структура гидроакустического сигнала системы позиционирования объектов в водной среде при быстрых замираниях в канале распространения. Дана оценка пропускной способности канала. Изложены подходы к построению преамбулы пакета, передаваемого гидроакустическим маяком. Для типовых условий оценена шумовая ошибка измерения дистанции от объекта до гидроакустического маяка.

Гидроакустический сигнал, модуляция, некогерентный сигнал, пропускная способность, преамбула, автокорреляционная функция, точность оценивания запаздывания

Для решения многих задач, связанных с исследованием и освоением гидросферы, необходима точная координатная привязка подводных объектов (ПО). Для ее осуществления нередко приходится привлекать гидроакустический канал связи (ГКС), поскольку глубина проникновения электромагнитных волн (за исключением декакилометровых) в толщу воды не превышает единиц метров.

Одним из перспективных вариантов организации навигационного обслуживания ПО является комплексирование глобальной навигационной спутниковой системы, например ГЛОНАСС, с гидроакустическим функциональным дополнением [1]. Последнее представляет собой сеть надводных буев, оборудованных спутниковыми навигаторами, благодаря которым местоположение каждого буя непрерывно отслеживается с высокой точностью в единой шкале времени. Гидроакустический передатчик, помещенный в подводную часть буя, обеспечивает функционирование буя в качестве навигационного маяка. По запросу ПО или судна поддержки (при наличии такового) буй излучает гидроакустический сигнал, в формате которого содержится информация о текущих координатах маяка. Дальнейшие действия по позиционированию ПО сводятся к фиксации им моментов прихода гидроакустических сигналов от нужного числа маяков, извлечению из этих сигналов данных о положении буев и решению стандартной навигационной задачи [1], [2].

Важнейшим элементом дизайна упомянутого функционального дополнения является структура гидроакустического сигнала, при разработке которой необходим скрупулезный учет физических особенностей используемого канала распространения. В предыдущих работах [3], [4] авторами настоящей статьи рассмотрены подходы к построению сигнала, адаптированного к гидроакустическому каналу с медленными замираниями. В предлагаемой статье акценты перенесены на случай быстрых замираний, характерных для многих реальных сценариев.

Согласно [5], [6] для гидроакустического канала в контексте рассматриваемой задачи типичны следующие значения параметров:

1. В зависимости от гидрологии конкретного района, а также от расстояния объекта до отражающей (рассеивающей) поверхности, задержка второго энергозначимого луча (многолучевой помехи) относительно основного лежит в диапазоне от 1 до 500...600 мс; при этом отношение энергий первого и второго лучей может составить 3...10 дБ.

2. Приемлемая несущая частота сигнала f_0 , определяемая в первую очередь затуханием в среде, составляет $f_0 \le 30$ и $f_0 \le 10$ кГц для дистанций 500...1500 и 2000...12 000 м соответственно.

3. Относительная ширина спектра сигнала, определяемая возможностями излучающего тракта, а также полосой пропускания ГКС, составляет $W/f_0 = 0.2...0.3$. При этом для несущих 10 и 30 кГц полоса сигнала W составит 3 и 9 кГц соответственно.

4. Отношение "сигнал/шум" в полосе сигнала $q_0 = 0...10$ дБ.

5. Необходимая скорость передачи информации R = 0.7...2 кбит/с.

Как отмечалось в предыдущих публикациях авторов [3], [4], для гидроакустической навигации целесообразно использовать пакетный режим передачи. В его рамках синтез сигнала сводится к выбору подходящего модуляционного формата, оптимизации преамбулы по критериям надежности обнаружения пакета и точности фиксации момента его приема, а также к рациональной организации кадра данных с учетом необходимости их помехоустойчивого кодирования. Последнему аспекту проблемы авторы планируют посвятить отдельную публикацию, а в настоящей статье ограничиться лишь обоснованием рекомендаций, касающихся способа модуляции и структуры преамбулы.

Выбор и обоснование типа модуляции. Интервал когерентности быстрых замираний в гидроакустическом канале может оказаться соизмеримым с длительностью индивидуальной посылки, исключая тем самым возможность использования не только когерентных форматов модуляции (фазовой, квадратурно-амплитудной), но и дифференциальных [7], [8]. Таким образом, целесообразно ориентироваться на некогерентные способы цифровой модуляции, среди которых максимально помехоустойчивы те, которые для передачи символов М-ичного алфавита используют ортогональные посылки [9]. Таковой, в частности, является М-ичная частотная модуляция (ЧМ) (multiple frequency shift keying - MFSK), отображающая информационные символы в посылки разных частот.

При относительно слабой интенсивности многолучевой помехи (см. ранее) райсовскими амплитудными замираниями результирующего принятого сигнала в первом приближении можно пренебречь, полагая принятую мощность фиксированной. При этом вероятность символьной ошибки *p*_s в *М*-ичном MFSK-демодуляторе [9]:

$$p_{\rm s} = 1 + \frac{1}{M} \sum_{i=1}^{M} (-1)^{i} {M \choose i} \exp\left[-\frac{(i-1)q_{\rm s}^{2}}{2i}\right], \quad (1)$$

где $q_{\rm s}$ – символьное отношение "сигнал/шум", связанное с отношением "сигнал/шум" на бит $q_{\rm b}$

как $q_s^2 = q_b^2 \log_2 M$. В свою очередь, поскольку символьная ошибка приводит к искажению любого конкретного бита с вероятностью M/[2(M-1)], вероятность ошибки на бит при различении M ортогональных символов составит

$$p_{\rm b} = p_{\rm s} M / [2(M-1)]$$

Подставив последнее выражение в (1) и сопоставив результат с вероятностью ошибки на бит для квадратурной фазовой модуляции (КФМ) [9], для энергетических потерь *М*-ичной некогерентной передачи по сравнению с КФМ можно получить оценки, приведенные в табл. 1.

		Таблица 1	
1/	<i>р</i> _b , дБ		
количество частот М	10 ⁻⁴	10 ⁻⁶	
	Энергетический проигрыш		
2	3.9	3.7	
4	1.2	0.9	
8	-0.2	-0.7	

Отрицательный знак потерь при M = 8 объясняется тем, что увеличение расстояний относительно случая M = 4 и КФМ при одной и той же энергии бита перекрывает потери, характерные для некогерентного приема.

Пропускная способность некогерентного MFSK-канала. В основу оценки пропускной способности исследуемого гидроакустического канала положены следующие соображения. Пусть W и t_e – полоса и время когерентности канала соответственно. Первая из этих величин определена в исходных данных (3 или 10 кГц). Вторую величину можно в первом приближении оценить по возможному доплеровскому рассеянию. Если f₀ – несущая, а v_r - максимальная радиальная скорость объекта относительно передатчика, то максимальное доплеровское приращение частоты $\Delta f_{\rm d} = v_{\rm r} f_0 / c$, где $c \approx 1500$ м/с – скорость звука в воде. Так, $\Delta f_{\rm d} \approx 200$ Гц при $f_0 = 30$ кГц и *v*_r =10 м/с. При любом сценарии доплеровская разность сигналов разных лучей не превосходит $2\Delta f_{\rm d}$, так что с большим запасом эта величина может быть принята за оценку доплеровского рассеяния в канале. Поскольку время когерентности канала связано с доплеровским рассеянием обратной зависимостью, имеем $t_c \approx 1/(2\Delta f_d)$.

Будем исходить из того, что когерентная обработка сигнала должна распространяться на максимально возможный временной интервал, т. е. t_c , поскольку любое разбиение интервала t_c на некогерентные отрезки снизит надежность передачи данных [9]. Тогда длительность кодового символа T_s следует положить равной t_c : $T_s = t_c$. В рамках доступного частотно-временного ресурса (полосы W, отведенного времени T_s) можно получить $M = WT_s$ ортогональных сигналов (в частности, гармоник MFSK), реализовав *М*-ичное кодирование.

При жесткой демодуляции на приемной стороне имеем M-ичный симметричный канал, средняя взаимная информация между входом и выходом которого максимизируется равномерным распределением априорных вероятностей M входных сигналов. В силу симметрии канала безусловная энтропия выхода на символ составит $H(Y) = \log M$, тогда как условная

$$H(Y|X) = -(M-1)\frac{p_{\rm s}}{M-1}\log\left(\frac{p_{\rm s}}{M-1}\right) - -(1-p_{\rm s})\log(1-p_{\rm s}),$$

поскольку при фиксированном входе все ошибочные состояния выхода равновероятны (из-за равноудаленности сигналов). Тогда пропускная способность C_d дискретного по времени канала в битах на символ:

$$C_{\rm d} = H(Y) - H(Y|X) =$$

= log M - h(p_s) - p_s log (M-1), (2)

где $h(p) = -p \log p - (1-p) \log (1-p)$ – энтропия двоичного ансамбля. Таким образом, пропускная способность $C = C_d / T_s$, бит/с, на единицу полосы с учетом (2) задается равенством

$$C/W = \frac{1}{M} \Big[\log M - h(p_{\rm s}) - p_{\rm s} \log(M - 1) \Big].$$
(3)

Зависимости пропускной способности на единицу полосы от отношения "сигнал/шум" в полосе W для нескольких значений $M = Wt_c$, построенные согласно (3), показаны на рисунке. Как можно видеть, при малых отношениях "сигнал/шум" в полосе и допустимой низкой спектральной эффективности преимущество в пропускной способности имеют форматы с большим числом ча-

стот. С улучшением энергетики канала для повышения спектральной эффективности разумно использовать умеренное число частот: M = 3 или 4. В общем случае при стремлении шума к нулю $C/W \rightarrow \log M/M$, так что в бесшумном канале оптимальным среди натуральных размером алфавита оказывается M = 3.

Преамбула гидроакустического сигнала. Одним из возможных вариантов ЧМ-преамбулы мог бы служить массив Костаса, представляющий собой набор из N точек, помещенных в клетки шахматной доски с размерами N×N по одной в каждой строке и в каждом столбце так, чтобы все N(N-1)/2 векторов между каждой парой точек оказались различными [10]. Если к-ю клетку по вертикали отождествить с k-й частотой, а l-ю по горизонтали – с 1-м моментом времени, получится последовательность длины N, каждый элемент которой представляет собой посылку одной из N частот. При произвольном сдвиге массива Костаса по горизонтали (времени) и по вертикали (частоте) имеет место не более одного совпадения точек в исходной и в сдвинутой репликах, а это означает, что описанная последовательность обладает идеальной (кнопочной) функцией неопределенности. Массивы Костаса существуют для широкого диапазона длин и имеют регулярные правила построения [11].

В рассматриваемом случае, однако, достаточно, чтобы функция неопределенности имела малый уровень только при временных сдвигах, поскольку согласно приведенным ранее оценкам, доплеровский сдвиг уложится в пределы ± 200 Гц, т. е. не выйдет за пределы полосы сигнала. Тем самым ЧМ-преамбулу можно конструировать как решетку размером $M \times N$ с априори фиксированным горизонтальным размером (длиной) N и необходимым вертикальным размером (количеством частот) M < N, при сдвигах которой по горизонтали числа совпадений частот в оригинале и в сдвинутой реплике не превосходят заданного.

Ключевое требование к *М*×*N*-преамбуле (*N*- длина, измеряемая количеством чипов) надежное обнаружение главного пика на выходе приемного устройства. Основной элемент последнего – банк из М параллельных ветвей. Каждая из ветвей включает полосовой фильтр, настроенный на одну из частот преамбулы, и следующий за ним амплитудный детектор. С выходов детекторов колебание подается на сумматор через линию задержки с отводами, каждый из которых соответствует запаздыванию на время $T - t_{kl}$, где T – полная длительность преамбулы; а t_{kl} – задержка *l*-го по порядку чипа k-й частоты относительно начала преамбулы. При этом k = 1, 2, ..., M, а $l=1, 2, ..., N_k$, причем N_k – число повторений *k*-й частоты и $N_1 + N_2 + \ldots + N_M = N$. Таким образом, в момент поступления на вход последнего чипа преамбулы со всех отводов линий задержки на сумматор поступят реакции на предыдущие чипы, обеспечив формирование главного пика отклика приемника. Длину преамбулы N следует выбрать, исходя из приемлемых вероятностей ложной тревоги и пропуска при обнаружении главного пика. После этого, задавшись допустимым уровнем бокового лепестка автокорреляции преамбулы, можно найти минимальное достаточное число частот М.

Проиллюстрируем процедуру подбора параметров решетки для канала с временем когерентности $t_c = 2$ мс. При длительности посылки, близкой к времени когерентности, в полосе W можно разместить $M = Wt_c$ частот. Так, M = 6 при W = 3 кГц. В табл. 2 приведены примеры решеток с M = 6 для тех длин N, при которых максимальный боковой лепесток автокорреляции преамбулы $\rho_{amax} = 1/N$, т. е. число совпадений частот и в сдвинутой реплике, и в оригинале равно единице.

Для отношения "сигнал/шум" $q_0 = 0$ дБ в полосе W = 3 кГц и вероятностей пропуска $\beta = 5 \cdot 10^{-2}$ и ложной тревоги $\alpha = 10^{-5}$ минимально необходимая длина преамбулы N = 12. Тем самым пригодна преамбула на основе первой строки табл. 2.

		Таблица 2
$M \times N$	Решетка	р _{атах} , дБ
6×12	1, 2, 2, 1, 3, 4, 3, 5, 6, 4, 2, 3	-21.6
6×14	1, 2, 3, 4, 5, 6, 6, 5, 4, 2, 1, 3, 6, 3	-22.9
6×15	1, 2, 3, 4, 5, 6, 6, 5, 4, 2, 1, 3, 6, 3, 1	-23.5

Оптимальные решетки, имеющие не более одного совпадения частот при временны́х сдвигах $\tau = mT_s$, m=1, 2, ..., N-1, т. е. обладающие свойством $\rho_{amax} = 1/N$, при числе частот M = 6существуют вплоть до длин N=15 [11], [12]. При небольших размерах $M \times N$ поиск оптимальных решеток возможен с помощью перебора, причем некоторые готовые конструкции можно найти, например в [11]. Конструирование подходящих решеток при $M = p^m$, где p – простое, а m – натуральное, осуществимо также на основе кодов Рида–Соломона.

.....

Точность измерения запаздывания некогерентного пакета. Чтобы оценить точности измерения запаздывания рассматриваемого сигнала необходимо модифицировать известную формулу Вудворда с учетом энергетических потерь в детекторе и изменения крутизны сигнальной составляющей на выходе последнего. Измеритель на приемной стороне имеет структуру цепочки "согласованный фильтр для посылки – квадратичный детектор – накопитель N реализаций – фиксатор момента максимума" [13]. После ряда преобразований придем к итоговому результату для дисперсии оценки запаздывания сигнала:

$$\operatorname{var}\{\hat{\tau}\} \approx \frac{2+q^2}{nq^4 \left(2\pi W_{\mathrm{rms}}\right)^2}, \ nq^2 \gg 1,$$
 (4)

где *q* – отношение "сигнал/шум" на посылку; *n* – число посылок; *W*_{rms} – среднеквадратическая ширина спектра сигнала.

Если спектр посылки близок к равномерному в полосе W, то $W_{\rm rms} \approx W/(2\sqrt{3})$. Для отношения "сигнал/шум" на посылку q = 0 дБ, длины преамбулы N = 12 и полосы W = 3 кГц $W_{\rm rms} \approx 866$ Гц и из (4) var $\{\hat{\tau}\} \approx 8.5 \cdot 10^{-9}$ с⁻², что соответствует среднеквадратической ошибке измерения запаздывания $\sigma_{\tau} \approx 92$ мкс. Приведенное значение отвечает среднеквадратической погрешности измерения расстояния $\sigma_{\rm r} = c\sigma_{\tau}$, т. е. $\sigma_{\rm r} \approx 0.14$ м при скорости звука в воде c = 1500 м/с. Подобная точность измерения вполне приемлема в задачах позиционирования ПО.

Из представленных результатов следует, что для функционального дополнения ГНСС, обеспе-

чивающего позиционирование ПО, при быстрых замираниях в гидроакустическом канале:

– целесообразно использовать некогерентную передачу на основе *М*-ичной ЧМ;

преамбулу пакета следует выбирать в виде
М-частотного сигнала с хорошей некогерентной

СПИСОК ЛИТЕРАТУРЫ

1. Zielinski A. Communications Underwater. Invited Paper // J. of Hydroacoustics. 2004. Vol. 7. P. 235–252.

2. Baggeroer A. Acoustic telemetry – an overview // IEEE J. oceanic eng. 1984. Vol. 9. Iss. 4. P. 229–235.

3. Боровицкий Д. С., Ипатов В. П. Разработка гидроакустического сигнала системы подводной навигации // Изв. вузов России. Радиоэлектроника. 2013. Вып. 2. С. 18–25.

4. Боровицкий Д. С., Ипатов В. П. К построению канала передачи данных системы подводной навигации // Изв. вузов России. Радиоэлектроника. 2013. Вып. 5. С. 55–59.

5. Preisig J. Acoustic propagation considerations for underwater acoustic communications network development // ACM SIGMOBILE mobile comp. commun. rev. 2007. Vol. 11, $N_{\rm P}$ 4. P. 2–10.

6. Stojanovic M. On the relationship between capacity and distance in an underwater acoustic channel // ACM SIGMOBILE mobile comp. commun. rev. 2007. Vol. 11, № 4. P. 34–43.

ний частот при временны́х сдвигах; – несмотря на некогерентность сигнала энер-

автокорреляцией, т. е. с малым числом совпаде-

гопотенциал типовой линии передачи вполне достаточен для весьма точного местоопределения ПО.

7. Kilfoyle D., Baggeroer A. The state of the art in underwater acoustic telemetry // IEEE J. of oceanic eng. 2000. Vol. 25, № 1. P. 4–27.

8. Borowski B. Application of channel estimation to underwater acoustic communication. Ph.D thesis / Stevens institute of technology. Castle point, Hudson, NJ, 2010. 267 p.

9. Прокис Дж. Цифровая связь / пер. с англ. М.: Радио и связь, 800 с.

10. Costas J. P. A study of a class of detection waveforms having nearly ideal range – Doppler ambiguity properties // Proc. of the IEEE. 1984. Vol. 72, N ≥ 8. P. 996–1009.

11. Hamkins J., Zeger K. Improved bounds on maximum size binary radar array // IEEE Trans. inform. theory. 1997. Vol. IT-43. Iss. 3. P. 997–1000.

12. Ипатов В. П. Широкополосные системы и кодовое разделение сигналов. Принципы и приложения / пер. с англ. М.: Техносфера, 2007. 487 с.

13. Радиотехнические системы: учебник для вузов / Ю. П. Гришин, В. П. Ипатов, Ю. М. Казаринов и др. М.: Высш. шк., 1990, 496 с.

D. S. Borovitsky

JSC "Russian institute of radionavigation and time" (Saint-Petersburg) V. P. Ipatov

Saint-Petersburg state electrotechnical university "LETI"

Designing hydroacoustic signal for underwater positioning in the fast fading conditions

The hydroacoustic signal structure is proposed of the underwater positioning system when propagation channel is subject to a fast fading. The channel capacity is estimated. Approaches to designing a packet preamble of the hydroacoustic beacon are presented. For typical conditions the noise error of the distance measuring is calculated.

Hydroacoustic signal, modulation, noncoherent signal, capacity, preamble, autocorrelation function, time-of-arrival measuring

Статья поступила в редакцию 2 марта 2014 г.