УДК 621.375.4

А. П. Ефимович Донецкий национальный университет

Методика расчета насыщенного усилителя класса F

Предложена методика расчета насыщенного усилителя класса F. Найдены значения углов отсечки, при которых может быть реализован данный усилитель. Показано, что насыщенный усилитель класса F реализуем в большем диапазоне углов отсечки, чем ненасыщенный усилитель класса F.

Усилитель класса F, стоковый КПД, выходная мощность, насыщение транзистора

Транзисторный усилитель мощности (УМ) класса F относится к высокоэффективным усилителям, в которых теоретически возможно получить стоковый КПД $\eta_d = 100\%$ [1], [2]. Однако для этого необходимо использовать нагрузочные цепи, настроенные на бесконечное число гармоник тока стока i_d , что на практике реализовать невозможно. В связи с этим наибольшее распространение получил УМ класса F с добавлением третьей гармоники напряжения [3], поскольку такой усилитель обладает высоким теоретическим значением $\eta_d = 90.69\%$ [3] и не требует сложной нагрузочной цепи. Вместе с тем теория УМ класса F содержит вопросы, вызывающие трудности при практической реализации усилителя.

На рис. 1 показаны зависимости амплитуды третьей гармоники тока стока I_{d3} от значения угла отсечки θ_{c1}^{-1} , полученные при аппроксимации импульса тока i_d усеченной косинусоидой (1) и при квадратичной аппроксимации (2) [4], [5].

В настоящей статье назовем θ_{c1} нижним углом отсечки.

В [3] значение $\eta_d = 90.69\%$ получено в предположении, что ток id аппроксимирован усеченной косинусоидой и нижний угол отсечки $\theta_{c1} = 90^\circ$ соответствует УМ класса В. Но у косинусоидального импульса тока i_d при $\theta_{c1} = 90^\circ$ $I_{d3} = 0$ (рис. 1), что не позволяет получить форму напряжения стокисток u_{ds} , соответствующую УМ класса F [4], [5]. В указанном УМ напряжение *u*_{ds} должно быть образовано первой и третьей гармониками напряжения, противофазными друг другу. Для этого третья гармоника тока при заданном θ_{c1} должна быть противофазна первой гармонике, т. е. Id3 должна быть отрицательна [5]. На практике этого добиваются за счет выбора $\theta_{c1} > 90^\circ$, что соответствует углу отсечки УМ класса АВ. В [4], [5] показано, что с учетом нелинейности проходной характеристики транзистора угол отсечки θ_{c1} , при котором значение ld3 отрицательно, соответствует глубоко смещенному УМ класса АВ. Указанная нелинейность транзистора учитывается квадратичной аппроксимацией импульса тока id (рис. 1, кривая 2) [6]. При такой аппроксимации получить отрицательное значение I_{d3} можно при значениях [4]

$110.08^{\circ} < \theta_{c1} < 173.7^{\circ}.$

В [7] установлено, что за счет насыщения транзистора в УМ класса F можно получить отрицательное значение I_{d3} не только при $\theta_{c1} = 90^{\circ}$, но и при углах отсечки $\theta_{c1} < 90^{\circ}$, соответствующих УМ класса C. Такой усилитель называют насыщенным УМ класса F [7]–[9]. В настоящее время не существует методики расчета данного УМ, поскольку не получены аналитические выражения для амплитуд гармоник тока i_d , используя которые можно при заданном θ_{c1} вычислить значения активных нагрузочных импедансов на стоке транзистора на первой и третьей гармониках, а также рассчитать значения η_d и выходной мощности усилителя P_{out} . Также для насыщенного УМ класса F остаются неопределенными амплитуда гармонического напряжения U'_{gs} , подаваемого на затвор транзистора, и угол отсечки θ_{c1} , при которых может быть реализован данный УМ.

Целью настоящей статьи является развитие методики расчета насыщенного УМ класса F.

Ток стока и напряжение сток-исток насыщенного УМ класса F. Для достижения поставленной цели получим выражения амплитуд гармоник тока id насыщенного УМ класса F. Pacсмотрим УМ с добавлением третьей гармоники напряжения (рис. 2), где VT – активный элемент (полевой транзистор) (g - затвор; d - сток; s - исток); L_1, L_2 – высокочастотные дроссели; C_1, C_2 – блокировочные конденсаторы по постоянному току; R₁ – активное нагрузочное сопротивление транзистора на первой гармонике; ПФ – полосовой фильтр; U_{gg} - напряжение смещения на затворе транзистора; U_{dd} – напряжение питания УМ. Будем считать, что нагрузочная цепь на первой и третьей гармониках представляет для транзистора чисто активные импедансы $Z(f_0)$ и $Z(3f_0)$ соответственно, а импедансы на второй и

на всех гармониках выше третьей равны нулю (f_0 – частота первой (основной) гармоники). На вход усилителя (рис. 2) подается гармоническое напряжение

$$u_{\rm in}(\theta) = U_{\rm gs}\cos\theta, \qquad (1)$$

где $\theta = \omega_0 t + \varphi_0 = 2\pi f_0 t + \varphi_0$, причем $\omega_0 = 2\pi f_0$; t - время; $\varphi_0 -$ начальный сдвиг фазы (далее принято $\varphi_0 = 0$); U_{gs} – амплитуда напряжения на затворе транзистора, соответствующая критическому режиму. С учетом (1) выражение для напряжения затвор-исток u_{gs} будет иметь вид (рис. 3)

$$u_{gs}(\theta) = U_{gg} + u_{in}(\theta) = U_{gg} + U_{gs}\cos\theta.$$

Значение θ_{cl} в радианах можно найти по формуле [10]

$$\theta_{c1} = \arccos \left[U_{th} - U_{gg} / U_{gs} \right],$$

где $U_{\rm th}$ – пороговое напряжение транзистора. В дальнейшем будем считать, что угол $\theta_{\rm c1}$ задан.

При квадратичной аппроксимации выражение для импульса тока стока может быть записано как [5]

$$i_{\rm d}(\theta) = \begin{cases} I_{\rm d_{max}} \left\{ 1 - \left[(\theta - 2\pi k) / \theta_{\rm c1} \right]^2 \right\}^2, \\ -\theta_{\rm c1} + 2\pi k \le \theta \le \theta_{\rm c1} + 2\pi k; \\ 0, \ \left(\theta < -\theta_{\rm c1} + 2\pi k \right) \cup \left(\theta > \theta_{\rm c1} + 2\pi k \right), \end{cases}$$
(2)

где $I_{d_{\text{max}}}$ – максимальное значение импульса i_d , соответствующее критическому режиму; k – целое число (далее принято k = 0).

Ток *I*_{d_{max} связан с напряжением на затворе транзистора [10]:}

$$I_{d_{\max}} = S_{gs} \left[U_{gs} \left(0 \right) - U_{th} \right] =$$
$$= S_{gs} \left(U_{gs_{\max}} - U_{th} \right) = S_{gs} \Delta U_{gs}, \qquad (3)$$

где $S_{\rm gs}$ – крутизна проходной характеристики транзистора; $U_{\rm gs_{max}}$ – напряжение на затворе транзистора, соответствующее критическому режиму (рис. 3).

На интервале $-\pi < \theta < +\pi$ ток i_d (2) можно разложить в ряд Фурье [2]:

$$i_{\rm d}(\theta) = I_{\rm d_{max}} a_0 + I_{\rm d_{max}} \sum_{n=1}^{\infty} \left[a_n \cos(n\theta) + b_n \sin(n\theta) \right], \qquad (4)$$

где a_0 , a_n , b_n – коэффициенты разложения; n – номер гармоники тока. Поскольку $i_d(\theta)$ – четная функция, все коэффициенты b_n ряда (4) будут равны нулю и разложение Фурье примет вид

$$i_{d}(\theta) = I_{d_{\max}} a_{0} + I_{d_{\max}} \sum_{n=1}^{\infty} a_{n} \cos(n\theta) =$$
$$= I_{d0} + \sum_{n=1}^{\infty} I_{dn} \cos(n\theta), \qquad (5)$$

где I_{d0} , I_{dn} – постоянная составляющая и амплитуды гармоник тока I_d , определяемые как [2], [5]

$$I_{\rm d0} = I_{\rm d_{max}} a_0 = \frac{1}{2\pi} \int_{-0_{\rm c1}}^{\theta_{\rm c1}} i_{\rm d}(\theta) d\theta = \frac{8I_{\rm d_{max}}\theta_{\rm c1}}{15\pi}; \quad (6)$$

$$I_{dn} = I_{d_{max}} a_n = \frac{1}{\pi} \int_{-\theta_{c1}}^{\theta_{c1}} i_d(\theta) \cos\theta \, d\theta = \frac{16I_{d_{max}}}{\pi (n\theta_{c1})^4} \times \left[\left(\frac{3}{n - n\theta_{c1}^2} \right) \sin(n\theta_{c1}) - 3\theta_{c1} \cos(n\theta_{c1}) \right], \quad (7)$$

$$n = 1, 2, \dots$$

Предположим, что напряжение $U_{gs_{max}}$ увеличилось до значения $U'_{gs_{max}}$ (рис. 3). Согласно (3) рост $U_{gs_{max}}$ должен способствовать увеличению высоты импульса тока i_d до значения, которое обозначим как I'_{dmax} . Но в этом случае форма импульса уже не может быть описана с помощью (2), поскольку в состоянии насыщения транзистора ток i_d зависит и от напряжения u_{ds} . Обозначим через θ_{c2} фазовый угол, соответствующий части периода, в которой напряжение u_{ds} управляет током стока, и назовем его верхним углом отсечки. Этот угол может быть найден из уравнения, полученного из (2):

$$I_{d_{max}} = I'_{d_{max}} \left[1 - \left(\theta_{c2} / \theta_{c1} \right)^2 \right]^2.$$
 (8)

Из описанного принципа действия УМ следует условие $\theta_{c2} < \theta_{c1}$, поэтому из четырех корней уравнения (8) следует выбрать корень, удовлетворяющий данному условию. Разрешив (8) относительно θ_{c2} , получим выражение для этого угла:

$$\theta_{c2} = \sqrt{\theta_{c1}^2 - \theta_{c1}^2 \sqrt{I_{d_{max}}} / \sqrt{I'_{d_{max}}}}$$

Чтобы получить выражение, описывающее импульс тока стока насыщенного УМ класса F, используем метод, приведенный в [10] для насыщенного УМ класса C. Согласно этому методу импульс тока i_d насыщенного УМ класса C может быть найден как разность между составляющими, соответствующими импульсам для углов отсечки θ_{c1} и θ_{c2} . Графически процесс получения импульса тока стока насыщенного УМ класса F i_d^* показан на рис. 4.

Вспомогательный импульс тока i'_{d} стока с размахом $I'_{d_{max}}$ (рис. 4, δ) может быть описан с помощью (2) при замене $I_{d_{max}}$ на $I'_{d_{max}}$. Фурьеразложение i'_{d} аналогично разложению (5).

Постоянная составляющая I'_{d0} и амплитуды I'_{dn} гармоник тока i'_{d} вычисляются по формулам (6), (7) после замены $I_{d_{max}}$ на $I'_{d_{max}}$:

$$i'_{\rm d}(\theta) = I'_{\rm d0} + \sum_{n=1}^{\infty} I'_{\rm dn} \cos(n\theta)$$

Получим выражение для части импульса i'_d , заходящей в область насыщения, обозначив его i''_d (рис. 4, *в*). Размах этого импульса составляет $I''_{d_{max}}$ (рис. 4. *в*). Используя (2), запишем:

$$i_{d}''(\theta) = \begin{cases} I_{d\max}' \left\{ 1 - \left[(\theta - 2\pi k) / \theta_{c1} \right]^2 \right\}^2 - I_{d\max}, \\ -\theta_{c2} + 2\pi k \le \theta \le \theta_{c2} + 2\pi k; \\ 0, \ \left(\theta < -\theta_{c2} + 2\pi k \right) \cup \left(\theta > \theta_{c2} + 2\pi k \right), \end{cases}$$
(9)

где $I'_{d_{max}} = S_{gs} \left(U'_{gs_{max}} - U_{th} \right) = S_{gs} \Delta U'_{gs}$ (далее, аналогично (2) принято k = 0). Выражение (9) может быть разложено в ряд Фурье вида (5), причем в силу четности $i''_{d}(\theta)$ все коэффициенты b_n ряда (4) равны нулю и Фурье-разложение будет иметь вид

$$i_{d}^{"}(\theta) = I_{d0}^{"} + \sum_{n=1}^{\infty} I_{dn}^{"}(\theta_{c1}) \cos(n\theta)$$

После подстановки (9) в (6), (7) и вычисления интегралов в пределах $-\theta_{c2}$, θ_{c2} выражения для постоянной составляющей I_0'' и амплитудных значений I_n'' гармоник тока i_d'' будут иметь вид

$$I_{d0}'' = \frac{I_{d_{max}}'}{\pi} \left(\theta_{c2} + \frac{\theta_{c2}^5}{5\theta_{c1}^4} - \frac{2\theta_{c2}^3}{3\theta_{c1}^2} - \frac{I_{d_{max}}\theta_{c2}}{I_{d_{max}}'} \right);$$

$$I_{dn}'' = \frac{8I_{d_{max}}' \cos(n\theta_{c2})}{n\pi\theta_{c1}^4} \left[\theta_{c2} \left(\frac{\theta_{c2}^2 - \theta_{c1}^2}{n} - \frac{6}{n^3} \right) + \left(\frac{6}{n^4} + \frac{\left(\theta_{c2}^2 - \theta_{c1}^2\right)^2}{4} + \frac{\theta_{c1}^2 - 3\theta_{c2}^2}{n^2} - \frac{I_{d_{max}}\theta_{c1}^4}{4I_{d_{max}}'} \right) \times tg(n\theta_{c2}) \right], n = 1, 2,$$

Найдем выражение для тока стока i_{d}^{m} , создаваемого напряжением u_{ds} в интервале $-\theta_{c2}$, θ_{c2} (рис. 4, ϵ). Известно [3], что для ненасыщенного УМ класса F с добавлением третьей гармоники напряжение u_{ds} имеет вид

$$u_{\rm ds}(\theta) = U_{\rm dd} - U_{\rm ds1}\cos\theta + U_{\rm ds3}\cos(3\theta), \quad (10)$$

где U_{dd} – напряжение источника питания;

$$U_{ds1} = (2/\sqrt{3})(U_{dd} - U_{\kappa});$$

$$U_{ds3} = [1/(3\sqrt{3})](U_{dd} - U_{\kappa})$$

– амплитуды первой и третьей гармоник напряжения $u_{\rm ds}$ соответственно, причем $U_{\rm K}$ – напряжение насыщения транзистора.

Определим, при каких значениях θ_{c2} напряжение u_{ds} управляет током стока. Для этого необходимо найти значения угла отсечки, соответствующие минимумам u_{ds} ($U_{ds_{min}}$) (рис. 5, *a*). Продифференцируем (10), приравняем результат нулю и разрешим полученное уравнение относительно θ . Получим, что напряжение u_{ds} будет минимально при $\theta_{min} = \pm \pi/6 = \pm 30^\circ$. [1]. Таким образом, область управления током стока со стороны u_{ds} определяется неравенством $\pi/6 < \theta_{c2} < \theta_{c1}$.

В УМ класса F ток $i_{\rm d}^{''}$ противофазен $u_{\rm ds}$: если напряжение $u_{\rm ds}(\pm \pi/6)$ минимально, то ток $i_{\rm d}^{''}(\pm \pi/6) = I_{\rm d_{max}}^{''}$ максимален (рис. 5, δ). Импульс тока $i_{\rm d}^{''}$ описывается выражением

$$i_{\rm d}^{\prime\prime\prime}(\theta) = S_{\rm ds} \left[U_{\rm dd} + U_{\rm ds1}^{\prime} \cos \theta - U_{\rm ds3}^{\prime} \cos(3\theta) \right] - S_{\rm ds} \left(2U_{\rm dd} - U_{\rm K} \right), \tag{11}$$

где $S_{\rm ds} = I_{\rm d_{max}} / U_{\rm K}$ – крутизна линии критического режима;

$$U'_{ds1} = (2/\sqrt{3})(U_{dd} - U_{\kappa});$$

$$U'_{ds3} = [1/(3\sqrt{3})](U_{dd} - U'_{\kappa})$$

Второе слагаемое в (11) обеспечивает выполнение условия $i_d^{m}(\pm \pi/6) = 0$ при $U_{ds_{min}} = U_{\kappa} = U'_{\kappa}$, что соответствует ненасыщенному УМ класса F. Для получения $U_{ds_{min}} < U_{\kappa}$ необходим рост U_{ds1} и U_{ds3} , который возможен при увеличении U_{gs} . Пусть U_{ds1} и U_{ds3} увеличены до U'_{ds1} и U'_{ds3} соответственно за счет уменьшения напряжения U'_{κ} до уровня, обеспечивающего выполнение условия $i'''_{d}(\pm \theta_{c2}) = 0$. Тогда, приравняв нулю (11) при $\theta = \theta_{c2}$, определим U'_{κ} :

$$U_{\rm K}' = \begin{cases} U_{\rm dd} + \frac{3\sqrt{3} \left(U_{\rm dd} - U_{\rm K}\right)}{\cos(3\theta_{\rm c2}) - 6\cos(\theta_{\rm c2})}, \ \theta_{\rm c2} > \frac{\pi}{6}; \\ U_{\rm K}, \ \theta_{\rm c2} = 0. \end{cases}$$

Напряжение u'_{ds} насыщенного УМ класса F с учетом U'_{ds1} и U'_{ds3} может быть выражено следующим образом:

$$u'_{\rm ds}(\theta) = U_{\rm dd} - U'_{\rm ds1}\cos\theta + U'_{\rm ds3}\cos(3\theta).$$

С учетом этого представления Фурье-разложение $i_{d}^{m}(\theta)$ имеет вид

$$i_{\rm d}^{\prime\prime\prime}(\theta) = I_{\rm d0}^{\prime\prime\prime} + I_{\rm d1}^{\prime\prime\prime}\cos\theta + I_{\rm d2}^{\prime\prime\prime}\cos(2\theta) + I_{\rm d3}^{\prime\prime\prime}\cos(3\theta) + \sum_{n=4}^{\infty} I_{\rm dn}^{\prime\prime\prime}\cos(n\theta), \qquad (12)$$

причем, как и ранее, в силу четности функции $i_{d}^{m}(\theta)$ все коэффициенты b_{n} ряда (4) равны нулю.

Выражения для постоянной составляющей I_{d0}^{m} и амплитудных значений I_{dn}^{m} гармоник тока в (12) получаются после подстановки (11) в (6), (7) и вычисления интегралов в пределах $-\theta_{c2}$, θ_{c2} :

$$\begin{split} I_{d0}^{m} &= \frac{S_{ds}}{\pi} \Big[\theta_{c2} \left(U_{K} - U_{dd} \right) + \\ &+ U_{ds1}^{\prime} \sin \theta_{c2} - \frac{U_{ds3}^{\prime}}{3} \sin \left(3\theta_{c2} \right) \Big]; \\ I_{d1}^{m} &= \frac{S_{ds}}{\pi} \Big\{ U_{ds1}^{\prime} \theta_{c2} + \Big[2 \left(U_{K} - U_{dd} \right) + \\ &+ U_{ds1}^{\prime} \cos \theta_{c2} - 2U_{ds3}^{\prime} \cos^{3} \left(\theta_{c2} \right) \Big] \sin \theta_{c2} \Big\}; \\ I_{d2}^{m} &= \frac{S_{ds}}{\pi} \Big[\left(U_{ds1}^{\prime} - U_{ds3}^{\prime} \right) \sin \theta_{c2} + \\ &+ \left(U_{K} - U_{dd} \right) \sin 2\theta_{c2} + \\ &+ \left(U_{K} - U_{dd} \right) \sin 2\theta_{c2} + \\ &+ \left(1/3 \right) U_{ds1}^{\prime} \sin \left(3\theta_{c2} \right) - \left(1/5 \right) U_{ds3}^{\prime} \sin \left(5\theta_{c2} \right) \Big]; \\ I_{d3}^{m} &= \frac{S_{ds}}{6\pi} \Big\{ 12U_{ds1}^{\prime} \cos^{3} \theta_{c2} \sin \theta_{c2} - \\ &- 4 \left(U_{dd} - U_{K} \right) \sin \left(3\theta_{c2} \right) - \\ &- U_{ds3}^{\prime} \Big[6\theta_{c2} + \sin \left(6\theta_{c2} \right) \Big] \Big\}; \\I_{dn}^{m} &= \frac{2S_{ds}}{\pi} \Big\{ \frac{\left(U_{K} - U_{dd} \right) \sin \left(n\theta_{c2} \right) }{n} + \\ &+ \frac{U_{ds1}^{\prime}}{n^{2} - 1} \Big[n \cos \left(\theta_{c2} \right) \sin \left(n\theta_{c2} \right) - \\ &- \cos \left(n\theta_{c2} \right) \sin \left(\theta_{c2} \right) \Big] - \\ \frac{U_{ds3}^{\prime}}{2} \Big\{ \frac{\sin \left[\theta_{c2} \left(n - 3 \right) \right]}{n - 3} + \frac{\sin \left[\theta_{c2} \left(n + 3 \right) \right]}{n + 3} \Big\} \Big\}, \\ &n = 4, 5, \dots. \end{split}$$

Получим выражение для тока i_d^* насыщенного УМ класса F (рис. 4):

$$i_{d}^{*}(\theta) = i_{d}^{\prime}(\theta) - i_{d}^{\prime\prime}(\theta) - i_{d}^{\prime\prime\prime}(\theta).$$

Аналогично найдем постоянную составляющую и амплитуды гармоник тока i_d^* :

$$\begin{cases} I_{d0}^{*} = I'_{d0} - I''_{d0} - I''_{d0}; \\ I_{dn}^{*} = I'_{dn} - I''_{dn} - I'''_{dn}. \end{cases}$$
(13)

Форма i_{d}^{*} показана на рис. 3. Нагрузочная кривая, связывающая ток i_{d}^{*} и напряжение U'_{ds} , обозначена точками *abcd*. На участке *abc* нагрузочной кривой током i_{d}^{*} управляет напряжение U'_{ds} .

Алгоритм расчета и области возможных реализаций насыщенного УМ класса F. Рассмотрим зависимости $I_{d3}^*(\theta_{c1})$ с учетом отношения U'_{gs}/U_{gs} , где U'_{gs} – амплитуда напряжения на затворе транзистора, соответствующая насыщенному режиму. Выражения для U_{gs} и U_{gg} при заданных θ_{c1} , U_{th} и U_{gs}_{max} могут быть найдены из системы уравнений

$$\begin{cases} \theta_{c1} = \arccos\left[\left(U_{th} - U_{gg}\right)/U_{gs}\right]; \\ \Delta U_{gs} = U_{gg} + U_{gs} - U_{th}. \end{cases}$$
(14)

Решив (14) относительно $U_{\rm gs}$ и $U_{\rm gg}$ получим:

$$\begin{cases} U_{gs} = \Delta U_{gs} / (1 - \cos \theta_{c1}); \\ U_{gg} = U_{th} + \Delta U_{gs} + \Delta U_{gs} / (1 - \cos \theta_{c1}). \end{cases}$$
(15)

Выражения (15) справедливы и для $U'_{\rm gs}$ при замене $\Delta U_{\rm gs}$ на $\Delta U'_{\rm gs}$, поэтому отношение $\Delta U'_{\rm gs}/\Delta U_{\rm gs}$ эквивалентно отношению $U'_{\rm gs}/U_{\rm gs}$.

Определение параметров насыщенного УМ класса F можно свести к следующему алгоритму:

– по статическим характеристикам выбранного транзистора определяются значения $S_{\rm gs}$ и $S_{\rm ds}$;

выбирается нижний угол отсечки θ_{c1};

– выбирается отношение U'_{gs}/U_{gs} , при котором значение I^*_{d3} отрицательно;

– выбирается значение $\Delta U_{\rm gs}$, при котором достигается требуемая мощность $P_{\rm out}$;

- определяются значения $Z(f_0) = R_1 = U'_{ds1}/I^*_{d1}$ и $Z(3f_0) = U'_{ds3}/I^*_{d3}$;

– с использованием выражений (15) определяются $U'_{\rm gs}$ и $U'_{\rm gg}$.

Пример. Предположим, что заданы следующие значения: $U_{dd} = 1$ B, $\Delta U_{gs} = 1$ B, $S_{gs} = 1$ A/B, $U_{gsmax} = 1$ B, $I_{dmax} = 1$ A. Для простоты положим $U_{th} = 0$. Для выяснения влияния отношения U_{K}/U_{dd} выбором S_{ds} обеспечим 3 значения этого отношения: $U_{K}/U_{dd} = 0.05$, 0.1, 0.15. Учтем необходимость выполнения соотношения

$$I_{\mathrm{d}_{\mathrm{max}}}^{m} \leq I_{\mathrm{d}_{\mathrm{max}}}^{2}.$$

С использованием (13) и (15) найдены отношение $U'_{\rm gs}/U_{\rm gs}$ и нижний угол отсечки $\theta_{\rm c1}$, при которых реализуемы ненасыщенный и насыщенный УМ класса F (значения $I^*_{\rm d3}$ отрицательны) (рис. 6). На рис. 6 пунктирные линии ограничивают область, в которой реализуем ненасыщенный УМ класса F: $U'_{\rm gs}/U_{\rm gs} = 1$, 110.08° $\leq \theta_{\rm c1} \leq 173.7^{\circ}$. Указанный интервал соответствует глубоко смещенному УМ класса AB.

На рис. 6 заливкой выделены области значений $U'_{\rm gs}/U_{\rm gs}$ и $\theta_{\rm c1}$, при которых реализуем насыщенный УМ класса F. Максимально возможный угол отсечки $\theta_{\rm c1} = 180^\circ$ во всех трех случаях соответствует УМ класса A. По мере роста значения отношения $U_{\rm K}/U_{\rm dd}$ минимально возможный угол отсечки $\theta_{\rm c1}$, при котором реализуем насыщенный УМ класса F, снижается:

² В противном случае $(I_{d_{\text{max}}}^{\#} > I_{d_{\text{max}}})$ значение тока $i_{d}^{*}(\pm \pi/6)$ отрицательно, что в настоящей статье не рассматривается.

– при $U_{\rm K}/U_{\rm dd} = 0.05 \, \theta_{\rm c1_{\rm min}} = 68^{\circ}$ (рис. 6, *a*); – при $U_{\rm K}/U_{\rm dd} = 0.10 \ \theta_{\rm c1_{\rm min}} = 60^{\circ}$ (рис. 6, б); - при $U_{\rm K}/U_{\rm dd} = 0.15 \ \theta_{\rm c1_{\rm min}} = 62^{\circ}$ (рис. 6, *в*).

При этом наблюдается заметное расширение области, в которой указанный УМ реализуем (т. е. I_{d3}^{*} отрицателен). Расширение области отрицательных значений I^{*}_{d3} может представлять большой практический интерес в тех случаях, когда импеданс $Z(3f_0)$ задан нагрузочной цепью усилителя и получить требуемое значение U"ds3 при фиксированном θ_{c1} можно только за счет выбора I^{*}_{d3}. В ненасыщенном УМ класса F возможность выбора I_{d3}^{*} при фиксированном θ_{c1} отсутствует, поскольку область возможных реализаций не зависит от отношения U_{κ}/U_{dd} . Следовательно, насыщенный УМ класса F в отличие от ненасыщенного реализуем не только в большем диапазоне углов θ_{c1} , но и в большем диапазоне значений импеданса $Z(3f_0)$ (рис. 6).

Расчет и моделирование насыщенного УМ класса F. По алгоритму, описанному ранее, рассчитан насыщенный УМ класса F, выполненный на базе полевого транзистора 2N7000L³. При моделировании в пакете САПР "Advanced design system 2011"⁴ статические характеристики данного транзистора описывались с помощью уравнений "Shichman – Hodges" (1) [11]. Параметры модели данного транзистора приведены в [8]. Расчетные значения $S_{gs} = 0.174$ A/B и $S_{ds} = 0.175$ A/B определены по статическим характеристикам транзистора. Нижний угол отсечки выбран равным $\theta_{c1} = 90^{\circ}$, принимаемым обычно при реализации усилителей класса F. Пороговое напряжение для выбранного транзистора составляет $U_{\text{th}} = 1.86$ В. Напряжение питания принято $U_{dd} = 25$ В. Значение ΔU_{gs} выбрано равным 1.72 В, что соответствует $U_{\rm gs_{max}}$ = 3.58 В, $I_{\rm d_{max}}$ = 0.3 А и $U_{\rm K}/U_{\rm dd}$ = 0.068. Отношение $\Delta U'_{gs} / \Delta U_{gs} = U'_{gs} / U_{gs}$ выбиралось таким, чтобы значение I_{d3}^* было отрицательно, а

значение $Z(3f_0)$ примерно в 5 раз превышало $Z(f_0)$ при чисто активных значениях обоих импедансов. Выбор указанного соотношения импедансов вызван тем, что на практике в большинстве случаев из-за потерь в нагрузочных цепях удается получить $Z(3f_0) \approx (3...5)Z(f_0)$ [12]. Расчетные значения импедансов составили

$$Z(f_0) = 199.7 \text{ Om}, Z(3f_0) = 1014.2 \text{ Om}.$$

Нагрузочные импедансы на кристалле транзистора на второй гармонике и на всех гармониках выше третьей предполагались равными нулю. Расчет η_d выполнялся по формуле [2]

10

$$\eta_d = P_{out}/P_{DC}$$
,
где $P_{out} = U'_{dsl}I^*_{dl}/2$;
 $P_{DC} = U_{dd}I_{DC} = P_{out} + P_{dis} + P_3$

- мощность, потребляемая усилителем от источника питания [2], где $I_{\rm DC} = I_{\rm d0}^*$ – постоянный ток источника питания;

$$P_{\text{dis}} = \frac{1}{T} \int_{-T/2}^{T/2} u'_{\text{ds}}(\theta) i^*_{\text{d}}(\theta) d\theta$$

- мощность, рассеиваемая при перекрытии тока $i_{d}^{*}(\theta)$ и напряжения $u'_{ds}(\theta); P_{3} = U'_{ds3} |I_{ds3}^{*}|/2$ – мощность, рассеиваемая на активном нагрузочном импедансе $Z(3f_0)$ на третьей гармонике, причем Т – период сигнала основной частоты.

Моделирование усилителя выполнено методом гармонического баланса на рабочей частоте усилителя $f_0 = 13.56$ МГц. В гармоническом балансе учитывалось 20 гармоник. Результаты расчета и моделирования энергетических характеристик усилителя приведены в таблице. Значение Plos представляет собой суммарную мощность потерь в усилителе, равную сумме мощностей P_{dis} и P_3 .

Параметр	Расчет	Моделирование	
$U_{\rm gs}/U_{\rm gs}'$	1.654		1.419
η_d , %	87.88	89.66	90.37
<i>I</i> [*] _{d1} , A	0.139	0.144	0.142
$U_{\rm ds1},{ m B}$	27.76	28.80	28.39
$P_{\rm out}, { m Bt}$	1.929	2.078	2.019
$P_{\rm los}, {\rm Bt}$	0.266	0.240	0.215

³ ALL transistors datasheet. URL: http://alltransistors.com/ pdfview.php?doc=2n7000kl_bs170kl.pdf&dire=_vishay

Agilent technologies. URL: http://www.agilent.com/about/ newsroom/presrel/2011/22feb-em11027.html

Для сравнения результатов аналитического расчета и моделирования в таблице приведены значения η_d , P_{out} и P_{los} , полученные при одном и том же значении $U'_{gs}/U_{gs} = 1.654$. Полученный при моделировании η_d выше расчетного значения на 1.78 %, а P_{out} превышает расчетную мощность на 7.72 %.

Для определения значения отношения $U'_{\rm ds}/U_{\rm ds}$, обеспечивающего максимум стокового КПД, и соответствующих ему значений $P_{\rm out}$ и Plos в результате моделирования получены зависимости η_d , P_{out} и P_{los} от U'_{ds}/U_{ds} (рис. 7). Из приведенных зависимостей следует, что максимум обеспечивается при $U'_{ds}/U_{ds} = 1.419$, причем в этой точке Р_ю минимальна. Полученные значения в указанной точке приведены в таблице. Значение η_d, полученное в результате моделирования, превышает расчетное на 2.49 %, значение Pout превышает расчетную мощность на 4.66 %. Указанные различия расчетных и промоделированных значений объясняются тем, что при расчете крутизны S_{gs} и S_{ds} в целях упрощения

приняты постоянными. Напротив, при моделировании непостоянство этих параметров, вызванное нелинейностью статических характеристик транзистора, учитывается.

На рис. 8, *а* показаны полученные расчетом формы тока $i_d^*(\theta)$ и напряжения $u'_{ds}(\theta)$ для $U'_{gs}/U_{gs} = 1.654$. Аналогичные зависимости, полученные моделированием для $U'_{gs}/U_{gs} = 1.654$ и 1.419, представлены на рис. 8, *б* и *в* соответ-

ственно. Необходимо отметить, что результаты расчетов, полученные для $U'_{\rm gs}/U_{\rm gs} = 1.654$, оказались более близкими к результатам моделирования $U'_{\rm gs}/U_{\rm gs} = 1.419$, чем для аналогичных результатов для $U'_{\rm gs}/U_{\rm gs} = 1.654$ (см. таблицу). Таким образом, следует считать, что максимальному стоковому КПД соответствуют результаты расчетов $U'_{\rm gs}/U_{\rm gs} = 1.654$ и результаты моделирования для $U'_{\rm gs}/U_{\rm gs} = 1.419$.

В настоящей статье предложена методика аналитического расчета энергетических характеристик насыщенного УМ класса F. Показано, что указанный УМ при отношениях $U_{\rm K}/U_{\rm dd} = 0.05$, 0.10 и 0.15 может быть реализован в диапазонах нижнего угла отсечки $\theta_{\rm c1}$ 68...180°, 60...180° и 62...180° соответственно. На примере расчета параметров УМ класса F, выполненного при $\theta_{\rm c1} = 90^{\circ}$, показано, что значения стокового КПД $\eta_{\rm d}$ и выходной мощности $P_{\rm out}$, полученные с помощью численного моделирования усилителя, отличаются от рассчитанных значений не более чем на 2.49 и 7.72 % соответственно.

СПИСОК ЛИТЕРАТУРЫ

1. Kazimierczuk M. K. RF power amplifiers. Hoboken, USA: Wiley, 2008. 403 p.

2. Colantonio P., Giannini F., Limiti E. High efficiency RF and microwave solid state power amplifiers. Hoboken, USA: Wiley, 2009. 520 p. 3. Raab F. H. Maximum efficiency and output of class-F power amplifiers // IEEE Trans. on microw. theory and tech. 2001. Vol. MTT-49, №. 6. P. 1162–1166.

4. Colantonio P., Giannini F., Limiti E. HF class F design guidelines // Proc. XV-th Intern. conf. on microwaves, radar and wireless communications, Warszawa, 17–21 May 2004. Vol. 1 // Telecommunications Research Institute. Poland, Warsawa, 2004. P. 27–38.

5. On the class-F power amplifier design / P. Colantonio, F. Giannini, G. Leuzzi, E. Limiti // Intern. J. of RF and microwave computer-aided engineering. 1999. Vol. 9, № 2. P. 129–149.

6. Scott T. Tuned power amplifiers // IEEE Trans. on circuit theory. 1964. Vol. CT-11, № 3. P. 385–388.

7. Behaviors of class-F and class-F⁻¹ amplifiers / J. Moon, S. Jee, J. Kim et al. // IEEE Trans. on microw. theory and tech. 2012. Vol. MTT-60, \mathbb{N} 6. P. 1937–1951.

8. Ефимович А. П., Крыжановский В. Г. Исследование энергетических характеристик насыщенного усилителя класса F // Радиотехника: всеукр. межвед. науч.-техн. сб. / ХНУРЭ. Харьков, 2014. № 178. С. 84–92. 9. Ефимович А. П. Области возможных реализаций насыщенного усилителя класса F / Материалы III науч.техн. конф. с междунар. участием "Наука настоящего и будущего", СПб., 12–13 марта 2015. СПб.: Изд-во СПбГЭТУ "ЛЭТИ", 2015. С. 79–80.

10. Радиопередающие устройства: учеб. для вузов / В. В. Шахгильдян, В. Б. Козырев, А. А. Ляховкин и др.; под ред. В. В. Шахгильдяна. З-е изд. М.: Радио и связь, 2003. 560 с.

11. Switchman H., Hodges D. Modeling and simulation of insulated-gate field-effect transistor circuits // IEEE J. of solid-state circuits. 1968. Vol. SSC-3, № 3. P. 285–289.

12. Ефимович А. П., Крыжановский В. Г. Компенсация паразитных элементов транзистора с настройкой импедансов на гармониках в усилителе класса F // Технология и конструирование в электронной аппаратуре. 2014. № 1. С. 3–10.

A. P. Yefymovych

Donetsk national university

The method of calculating saturated class-F amplifier

The proposed method of calculating the saturated class-F amplifier. The determined values of the cut-off angles at which can be realized this amplifier. It is shown that a saturated class-F amplifier can be realized in high cut-off angle range than an unsaturated class-F amplifier.

Class-F amplifier, drain efficiency, output power, saturation of transistor

Статья поступила в редакцию 4 мая 2015 г.

УДК 621.373.5

А.В.Афанасьев, Ю.А.Демин, Б.В.Иванов, В.А.Ильин, В.В.Лучинин, К.А.Сергушичев, А.А.Смирнов Санкт-Петербургский государственный электротехнический университет "ЛЭТИ" А.Ф.Кардо-Сысоев Физико-технический институт им.А.Ф.Иоффе РАН

Мегаваттный генератор наносекундных импульсов на основе карбидокремниевых дрейфовых диодов с резким восстановлением

Представлены экспериментальные результаты исследования коммутационных характеристик высоковольтных карбидокремниевых коммутаторов на основе дрейфовых диодов с резким восстановлением (ДДРВ) и разработанного на их основе генератора наносекундных импульсов напряжения с мегаваттной импульсной мощностью. Впервые показана возможность последовательной компрессии энергии включенными параллельно кремниевым и карбидокремниевым каскадами ДДРВ.

Карбид кремния, дрейфовые диоды с резким восстановлением, наносекундные импульсы напряжения, высоковольтные диодные сборки

Высоковольтные генераторы сверхкоротких импульсов напряжения широко применяются в локационной, лазерной, преобразовательной технике, экспериментальной физике и импульсной интроскопии. Использование дрейфовых диодов с резким восстановлением (ДДРВ) в генераторах в