УДК 621.396.969.34

А. М. Мусин, К. М. Зейде Уральский федеральный университет им. первого Президента России Б. Н. Ельцина

Влияние вращения сферического тела, покрытого диэлектриком, на характеристики рассеяния¹

Приведен расчет коэффициентов рассеяния для сферы радиусом 250 мм с диэлектрическим покрытием для трех различных угловых скоростей вращения рассеивателя. Пученные результаты проанализированы.

Дифракция, рассеяние на вращающихся телах, радиолокационные характеристики, защитные материалы

Аналитические решения дифракционной задачи для вращающейся проводящей и диэлектрической сфер получены в [1], [2] соответственно. Анализ многослойных рассеивателей с использованием функций Грина описан в [3]. Механическое вращение сферы с покрытием – комплексная задача, включающая в себя некоторые результаты исследований описанных работ, однако требующая специального подхода к постановке и решению задачи. В настоящей статье представлены результаты исследования влияния вращения на характеристики рассеяния металлической сферы, покрытой специальным диэлектриком.

В рамках настоящей статьи исследованы новые магериалы, представленные в [4] и рекомендованные для промышленного использования. Полученные результаты могут найти применения в радиолокации и радиодиагностике. Наряду с этим они представляют теоретический интерес, в силу гого что влияние вращения становится ощутимым только при достаточно больших угловых скоростях рассеивателя.

В настоящей статье исследуется вращение сферы (рассеивателя) радиусом $\eta = 250$ мм (рис. 1) с угловой скоростью Ω , создающее дополнительные составляющие вгоричного электромагнитного поля с амплитудой порядка $\Omega \eta / c$ (c – скорость света в вакууме). При небольших значениях Ω влиянием этих полей можно пренебречь. В ста-

тье рассмотрены значения угловых скоростей, при которых поля высших порядков становятся соизмеримыми по амплитуде с волной, рассеянной от неподвижной сферы [5]. Для анализа рассеивателя, обладающего огличными от рассмотренных угловыми скоростями, может быть использован алгоритм предсказания поведения вторичного поля, изложенный в [6].

В [7] рассмогрена неподвижная сфера с такими же укрытиями. Некоторые представленные далее результаты сравнивались с результатами настоящей работы.

Характеристики материалов. В качестве материала покрытия рассмотрена разработка [4]. Относительная диэлектрическая проницаемость и проводимость измерены прибором ИДХ 7003 на частоте 1 МГц (табл. 1). Магнитная проницаемость этих материалов равна магнитной проницаемости воздуха µ₀. В настоящей статье приня-

			Таблица 1
Параметр	Материал покрытия		
	T3MKT-8	T3MKT-8KH-Al ₂ O ₃	ТЗМКТО-8К-ТЭАТ-МС
Толщина покрытия (r ₂ - r ₁), мм	3.5	4.0	3.75
Относительная диэлектрическая проницаемость (ε)	3.05	3.46	2.89
Проводимость ($\sigma \cdot 10^6$), См/м	4.5	5.4	3.7

¹ Исследование выполнено за счет гранта Российского научного фонда (проект № 14-19-01396).

[©] Мусин А. М., Зейде К. М., 2015

то допущение, что представленные параметры сохраняются во всем диапазоне анализируемых частот или меняются незначительно.

В статье приведены результаты численных расчетов частотной зависимости радиолокационного коэффициента рассеяния для неподвижной сферы, а также для сферы при различных фиксированных скоростях вращения.

Метод решения электродинамической задачи. На рис. 1 изображена геометрия задачи, которая решается электродинамическим методом в сферической системе координат (r, θ, ϕ) . Единичные орты $\mathbf{a}_r, \ \mathbf{a}_{\mathbf{\theta}}$ и $\mathbf{a}_{\mathbf{\phi}}$ (на рис. 1 не обозначены) направлены вдоль соответствующих осей. Падающая электромагнитная волна линейной поляризации $\mathbf{E} = E_0 \mathbf{a}_{\Theta}$ (E_0 – амплитуда напряженности падающей волны) рассеивается вращающейся с угловой скоростью Ω металлической сферой с радиусом r₁ = 250 мм и диэлектрическим покрытием толщиной r₂ - r₁, обладающим относительной диэлектрической проницаемостью є, проводимостью σ и магнитной проницаемостью μ₀.

Для расчета характеристик рассеяния использован аппарат тензорных функций Грина [8]. Радиолокационный коэффициент рассеяния записывается следующим образом:

$$\Gamma_{\rm p} = \frac{1}{\left(k_0 r_1\right)^2} \left| \sum_{n=1}^{\infty} (-1)^n (2n+1) \left(M_n - N_n\right) \right|^2, \quad (1)$$

где $k_0 = 2\pi/\lambda_0$ – волновое число в свободном пространстве (λ_0 – длина волны); M_n и N_n – коэффициенты, определяемые структурой сферического тела.

Коэффициенты определяются следующим образом:

$$M_{n} = \frac{i\bar{Z}_{n}(\gamma_{n}, r_{2})\iota_{n}(k_{0}r_{2}) - \iota'_{n}(k_{0}r_{2})}{i\tilde{Z}_{n}(\gamma_{n}, r_{2})\chi_{n}^{(2)}(k_{0}r_{2})};$$

$$N_{n} = \frac{i\tilde{Y}_{n}(\gamma_{n}, r_{2})\iota_{n}(k_{0}r_{2}) - \iota'_{n}(k_{0}r_{2})}{i\tilde{Y}_{n}(\gamma_{n}, r_{2})\chi_{n}^{(2)}(k_{0}r_{2})},$$

где \bar{Z}_n и \bar{Y}_n – ориентированные импеданс и адмитанс соответственно, отсчитываемые от границы между покрытием и свободным пространством в направлении начала координат (см. рис. 1); γ_n – постоянная распространения в диэлектрическом покрытии; $\iota_n(\cdot)$, $\chi_n^{(2)}(\cdot)$ – функции Риккати– 30

Бесселя *n*-го порядка и Риккати–Ганкеля 2-го рода *п*-го порядка [10] соответственно;

......

$$\begin{split} \vec{Z}_n\left(\gamma_n, r_2\right) &= \vec{Z}_n\left(\gamma_n, r_2\right) + \vec{Z}_n\left(\gamma_n, r_2\right);\\ \vec{Y}_n\left(\gamma_n, r_2\right) &= \vec{Y}_n\left(\gamma_n, r_2\right) + \vec{Y}_n\left(\gamma_n, r_2\right), \end{split}$$

причем \vec{Z}_n и \vec{Y}_n – ориентированные импеданс и адмитанс, соответственно, отсчитываемые от границы между покрытием и свободным пространством в направлении свободного пространства [11]; знаком "~" обозначена нормировка к импедансу и адмитансу свободного пространства, а штрихами – производные функций по координате *r*.

Постоянная распространения в диэлектрическом покрытии у_n определяется выражением, полученным в [11]:

$$\gamma_n^2 = k_0^2 N^2 - i\omega \mu_0 \sigma + \frac{n\Omega\omega}{c^2} \left(2N^2 - 2 - i\frac{\sigma}{\omega\varepsilon_0} \right), \quad (2)$$

где $N = \sqrt{\varepsilon \mu}$ – коэффициент рефракции ($\mu = 1$ – относительная диэлектрическая проницаемость); $\omega = 2\pi c/\lambda_0$

Отсюда следует, что если сферическое тело не вращается $(\Omega = 0)$, постоянная распространения не зависит от *n*.

Влияние вращения сферического тела на характеристики рассеяния. Расчет зависимости радиолокационной характеристики от электрического радиуса сферы проведен для материалов из табл. 1. На рис. 2 приведены зависимости $\Gamma_{\rm p}~(1)$ для $\Omega = 0$ (сплошные линии), $3.6 \cdot 10^7$ рад/с (штриховые линии) и $18 \cdot 10^7$ рад/с (штрих-пунктирные линии) для исследованных покрытий.

В табл. 2 приведены значения попутного коэффициента рассеяния

$$\Gamma_{\Pi} = \frac{1}{\left(k_0 \eta\right)^2} \left| \sum_{n=1}^{\infty} (2n+1) \left(M_n + N_n\right) \right|^2$$

для рассмотренных покрытий и тех же скоростей вращения рассеивателя.

Анализ результатов. Анализируя полученные результаты, можно сделать ряд выводов в отношении сравнения характеристик рассеяния для неподвижной и вращающейся сфер. Различия в указанных характеристиках вызваны главным образом тем, что при ненулевой угловой скорости на поверхности рассеяния возникает электрический ток, порожденный ускоренным движением заряженных частиц, находящихся в материале покрытия. От-

	k ₀ r ₁				
Ω·10 ⁻⁶ , рад/с	10	15	20	25	
	Γ_{n}				
T3MKT-8					
0	129.4352398	311.1053799	600.1949124	1010.289175	
3.7	130.52952	315.3929594	610.9932012	1029.954017	
18.7	134.8298434	332.4669906	652.2266635	1092.68756	
T3MKT-8KH-A12O3					
0	136.3087743	337.2693014	662.6355684	1103.351456	
3.7	137.766958	343.1379118	676.0728788	1112.602508	
18.7	143.5309717	366.2756197	727.7954806	1162.332626	
ТЗМКТО-8К-ТЭАТ-МС					
0	130.7104418	315.7194947	611.0439344	1028.674249	
3.7	131.8959274	320.3711662	622.5011176	1048.683563	
18.7	136.5678693	338.9046766	666.0333009	1104.411904	

личная от нуля проводимость поверхности рассеяния определяет плотность этого тока. Материальные уравнения Максвелла и граничные условия вычисляются с учетом этого вклада, который в конечном итоге выражается в третьем слагаемом формулы (2). Более подробную информацию читатель может

...

найти в [1], [11]. Далее приведено формальное изложение результатов исследования.

Во-первых, при незначительных электрических радиусах рассеивателя $(k_0r_1 < 5)$ влияние вращения на радиолокационный коэффициент рассеяния пренебрежимо мало. Причем значение минимального электрического радиуса, при котором влияние вращения начинает ощущаться (в рамках данного исследования), уменьшается с ростом скорости вращения сферы. Это справедливо для всех рассматриваемых покрытий.

Во-вторых, значения локальных максимумов и минимумов изменяются. Для всех рассматриваемых покрытий с увеличением Ω локальные максимумы становятся больше, а минимумы – меньше.

В-третьих, с увеличением скорости вращения локальные максимумы и минимумы σ_{II} смещаются в области более низких частот.

Проанализировав полученные значения для попутного коэффициента рассеяния, можно сделать вывод, что с ростом скорости вращения плотность потока мощности в попутном направлении в области высоких частот увеличивается квазилинейно. Причиной этого является возрастание вклада поля высших порядков во вторичное поле. Подобная ситуация наблюдается для всех рассмотренных диэлектриков, однако для укрытия из T3MKT-8KH-Al₂O₃, при $k_0\eta > 20$ и $\Omega = 18.7 \cdot 10^6$ рад/с возникают осцилляции коэффициента Γ_{II} (рис. 3).

Подобный эффект может быть объяснен максимальной (из рассматриваемых) проводимостью покрытия, что, в свою очередь, сказывается на увеличении вклада обратного рассеяния (отражения). При определенных значениях электрического радиуса и угловой скорости вращения сферы часть попутного потока мощности компенсируется отраженной от рассеивателя мощностью.

В настоящей статье получены радиолокационные характеристики для новых материалов покрытия при специфических условиях их использования. Полученные результаты согласуются с ранее полученными данными и расширяют их применимость.

СПИСОК ЛИТЕРАТУРЫ

1. Zutter de D. Scattering by a rotating conducting sphere // IEEE Trans. on ant. and propag. 1984. Vol. AP-32, iss. 1. P. 95–98.

2. Zutter de D. Scattering by a rotating dielectric sphere // IEEE Trans. on ant. and propag. 1980. Vol. AP-28, iss. 5. P. 643–651.

3. Knyazev S., Lesnaya L., Sabunin S. Green's functions of multilayred cylindrical structures and their application for radiation, propagation and scattering problems solving // 2011 SBMO/IEEE MTTS Int. Microwave and Optoelectronics Conf.: Program and Book of Abstracts. Natal, Brazil. 29 Oct. – 1 Nov., 2011. Piscataway: IEEE, 2011. P. 748–752.

 Койтов С. А., Мельников В. Н. Разработка наноструктурированного полимерного композиционного материала, армированного тугоплавким наполнителем // Вестн. концерна ПВО "Алмаз-Антей". 2013. Вып. 1(9). С. 64–69.

5. Зейде К. М. Анализ параметров вычислительного эксперимента по рассеянию ЭМВ от вращающегося цилиндра // Фундаментальные исследования. 2015. № 2, ч.16. С. 3503–3507.

6. Zeyde K. Linear dependences of secondary field parameters versus angular velocity of scatterer // Int. Siberian Conf. on Control and Communications (SIBCON-2015), Omsk, 20–22 May 2015. Omsk: The Tomsk IEEE Chapter & Student Branch, 2015. P. 1–4.

7. Панченко Б. А., Мусин А. М. Влияние теплозащитного покрытия выпуклых тел на радиолокационные характеристики // Изв. вузов России. Радиоэлектроника. 2014. Вып. 6. С. 3–5.

8. Панченко Б. А. Рассеяние и поглощение электромагнитных волн неоднородными сферическими телами. М.: Радиотехника, 2012. 292 с.

9. Абрамовиц М., Стиган И. Справочник по специальным функциям. М.: Наука. 1979. 830 с.

10. Фелсен Л., Маркувиц Н. Излучение и рассеяние волн: в 2 т. Т. 1. М.: Мир, 1978. 547 с.

11. Zutter de D. Scattering by a rotating circular cylinder with finite conductivity // IEEE Trans. on ant. and propag. 1983. Vol. AP-31, iss. 1. P. 166–169. A. M. Musin, K. M. Zeyde Ural Federal University

The influence of rotation of spherical bodies with dielectric coating on its radar characteristics

Dispersion ratio for sphere in diameter of 500 mm with the heat-shielding covering, for tree different angular velocities, was calculated. Produced the analysis of obtained results.

Diffraction, scattering by a rotating objects, radar-tracking characteristics, protective materials

Статья поступила в редакцию 8 октября 2015 г.

УДК 621.396.663:51

М. Е. Шевченко, В. Н. Малышев, Д. Н. Файзуллина Санкт-Петербургский государственный электротехнический университет "ЛЭТИ" им. В. И. Ульянова (Ленина)

Совместное обнаружение и пеленгование с использованием коммутируемой антенной решетки¹

Разработаны и исследованы алгоритмы совместного обнаружения и пеленгования в частотной области в широкой полосе частот при отсутствии перекрытия спектров соседних сигналов, получаемых с помощью коммутируемой круговой антенной решетки. Показано энергетическое и вычислительное преимущество алгоритма с первичным обнаружением по амплитудному спектру и вторичным пеленгованием в отсчетах, содержащих сигнальные составляющие, перед алгоритмом с первичным пеленгованием во всех частотных отсчетах с последующим обнаружением частотных отсчетов, в которых присутствуют сигнальные составляющие.

Круговая коммутируемая антенная решетка, совместное обнаружение и пеленгование, оценка пеленга и угла места, УКВ-диапазон

В УКВ-диапазоне для радиопеленгации достаточно давно применяются круговые коммутируемые *М*-элементные антенные решетки (АР), конструктивно реализованные в одном изделии. В частности, они используются в аэродромных радиопеленгаторах [1] и в широкополосном сканирующем пеленгаторе [2]. Коммутируемость каналов позволяет использовать двух- или трехканальное радиоприемное устройство (РПУ) вместо *М*-канального. За счет этого облегчается калибровка трактов РПУ, снижаются стоимость и габариты пеленгатора.

Как правило, в коммутируемых АР одна антенна подключена к опорному (некоммутируемому) каналу, а остальные последовательно подключаются с помощью коммутатора ко второму – коммутируемому каналу приема (рис. 1). На рынке представлен серийно выпускаемый радиопеленгатор УКВ-диапазона DDF550 "Rohde-&Shwarz", который формирует частотно-азимутальную панораму в полосе 80 МГц, пеленгует слабые (ниже уровня шума) шумоподобные сигналы [2]. В будущем фирма предполагает дополнить существующее программное обеспечение функцией сверхразрешения – возможностью формирования оценок пеленга нескольких источников радиоизлучения (ИРИ) на одной частоте.

Однако алгоритмы пеленгования в широкой полосе частот по данным от коммутируемой круговой АР в научной литературе и доступной технической документации подробно не описаны. В связи с этим была поставлена задача их собственной разработки для реализации в пеленгаторе УКВ-диапазона.

¹ При подготовке публикации использовались результаты работ по ОКР "Разработка пассивного когерентного локационного комплекса для охраны важных объектов", выполняемой СПбГЭТУ "ЛЭТИ" по договору с ОАО «НИИ "Вектор"» в рамках комплексного проекта по созданию высокотехнологичного производства при финансовой поддержке работ по проекту Министерством образования и науки Российской Федерации (постановление Правительства Российской Федерации от 9 апреля 2010 г. № 218).