УДК 621.396.969.34

Б. А. Панченко, А. М. Мусин Уральский федеральный университет им. первого Президента России Б. Н. Ельцина

Влияние теплозащитного покрытия выпуклых тел на радиолокационные характеристики¹

Рассчитаны коэффициенты рассеяния для сферы диаметром 500 мм с теплозащитным покрытием, имитирующей летательный аппарат выпуклой формы. Приведены результаты для четырех значений электрических размеров сферы.

Дифракция, защитное укрытие, радиолокационные характеристики, защитные материалы

При обнаружении летательных аппаратов радиотехническими средствами существенное влияние оказывает теплозащитное покрытие (ТЗП), нанесенное на элементы конструкции аппарата с целью защиты от теплового и механического воздействий во время полета на больших скоростях [1]. В этой связи в настоящей статье приведены результаты исследования влияния ТЗП на рассеяние электромагнитных волн выпуклым телом, которое аппрок-

ортами \mathbf{a}_r , \mathbf{a}_{θ} и \mathbf{a}_{ϕ} . Падающая электромагнитная волна линейной поляризации $\mathbf{E} = E_0 \mathbf{a}_{\theta}$ (E_0 – амплитуда напряженности падающей электромагнитной волны) рассеивается металлической сферой радиусом $r_1 = 500$ мм с диэлектрическим покрытием толщиной $r_2 - r_1$ с относительной диэлектрической проницаемостью ε_2 .

Таблица 1

Парамотр	Материал покрытия			
Параметр	T3MKT-8	T3MKT-8KH-Al ₂ O ₃	ТЗМКТО-8К-ТЭАТ-МС	
Толщина покрытия, мм	3.5	4	3.75	
Относительная комплексная	2.05.0.0822;	3.46–0.0969 <i>i</i>	2.89–0.0665 <i>i</i>	
диэлектрическая проницаемость ε_2	5.05-0.08251			

симируется сферой. Расчетным путем определены диаграммы рассеяния, значения радиолокационных и попутных коэффициентов рассеяния. Выполнено сравнение гладкого и зашишенного образцов.

Характеристики теплозащитных покрытий. В качестве защитных материалов рассмотрены наноструктурированные полимерные композиционные материалы, армированные тугоплавким наполнителем [2]. Результаты измерения относительной диэлектрической проницаемости полученных образцов приведены в табл. 1. Характеристики материалов измерены прибором ИДХ 7003.

Метод решения электродинамической задачи. На рис. 1 изображена геометрия задачи, решаемой электродинамическим методом в сферической системе координат (*r*, θ, φ) с единичными Параметром модели является величина $b = k_0 r_1$, где $k_0 = 2\pi/\lambda_0$ – волновое число в свободном пространстве, причем λ_0 – длина волны в нем же.

Радиолокационный коэффициент рассеяния металлической сферы без покрытия определяется следующим образом [3]:

¹ Исследование выполнено за счет гранта Российского научного фонда (проект №14-19-01396).

$$\sigma_{\rm r}(b) = 4/b^2 \times \left\{ \sum_{n=1}^{\infty} \left((-1)^n (2n+1) \left\{ \frac{j_n}{h_n^{(1)}} - \frac{\frac{d}{db} [bj_n(b)]}{\frac{d}{db} [bh_n^{(1)}(b)]} \right\} \right\}^2, (1)$$

где $j_n(\cdot)$ и $h_n^{(1)}(\cdot)$ – сферическая функция Бесселя *n*-го порядка и сферическая функция Ханкеля 1-го рода *n*-го порядка соответственно.

Для решения задачи с многослойными покрытиями используется аппарат тензорных функций Грина [4]. Рассеянное поле имеет вид

$$\mathbf{E}_{s}(r) =$$

$$= iE_{0} \frac{e^{-ik_{0}r}}{k_{0}r} \Big[\mathbf{a}_{\theta} S_{\parallel}(\theta) \cos \varphi - \mathbf{a}_{\varphi} S_{\perp}(\theta) \sin \varphi \Big], \quad (2)$$

где

$$\begin{split} S_{\parallel}(\theta) &= \sum_{n=1}^{\infty} \left\{ (-1)^n \frac{2n+1}{n(n+1)} \Big[\tau_n(\theta) M_n - \pi_n(\theta) N_n \Big] \right\}; \\ S_{\perp}(\theta) &= \sum_{n=1}^{\infty} \left\{ (-1)^n \frac{2n+1}{n(n+1)} \Big[\pi_n(\theta) M_n - \tau_n(\theta) N_n \Big] \right\}, \end{split}$$

причем

$$\tau_n(\theta) = \partial P_n^{(1)}(\cos\theta) / \partial \theta; \ \pi_n(\theta) = P_n^{(1)}(\cos\theta) / \sin\theta,$$

а $P_n^{(1)}(\cdot)$ – функция Лежандра *n*-й степени 1-го порядка.

Коэффициенты M_n и N_n определяют зависимости от размеров и от структуры сферического тела с покрытием [5]:

$$M_{n} = \frac{i\bar{Z}_{n}(r_{2})\iota_{n}(k_{0}r_{2}) - \iota'_{n}(k_{0}r_{2})}{i\tilde{Z}_{n}(r_{2})\chi_{n}^{(2)}(k_{0}r_{2})};$$

$$N_{n} = \frac{i\tilde{\tilde{Y}_{n}}(r_{2})\iota_{n}(k_{0}r_{2}) - \iota'_{n}(k_{0}r_{2})}{i\tilde{\tilde{Y}_{n}}(r_{2})\chi_{n}^{(2)}(k_{0}r_{2})},$$

где $\bar{Z}(r_2)$ и $\bar{Y}(r_2)$ – ориентированные импеданс и адмитанс соответственно, отсчитываемые от границы между покрытием и свободным пространством в направлении начала координат (см. рис. 1); $\iota_n(\cdot), \ \chi_n^{(2)}(\cdot) - функция Риккати-Бесселя$ *n*-гопорядка и функция Риккати-Ханкеля 2-го рода*n*-гопорядка [6] соответственно;

$$\vec{Z}(r_2) = \vec{Z}(r_2) + \vec{Z}(r_2); \ \vec{Y}(r_2) = \vec{Y}(r_2) + \vec{Y}(r_2),$$

причем $\vec{Z}(r_2)$ и $\vec{Y}(r_2)$ – ориентированные импеданс и адмитанс соответственно, отсчитываемые 4 от границы между покрытием и свободным пространством в направлении свободного пространства; знаком "~" обозначена нормировка к импедансу и адмитансу свободного пространства, а штрихами – производные функций.

В качестве проверки математической модели рассмотрена дифракция электромагнитной волны линейной поляризации на проводящей сфере без покрытия. Результаты проверки совпали с данными [7].

Выражение (2) содержит два векторных компонента: θ-й (основную поляризационную составляющую) и φ-й (кроссполяризационную составляющую). Рассеяние энергии характеризуется рядом коэффициентов [7]: общим коэффициентом рассеяния σ_s, радиолокационным σ_p и попутным σ_п коэффициентами рассеяния. Для рассеивателя сферической формы сечение связывается с общим коэффициентом рассеяния следующим образом [3], [4]:

$$\sigma_{\rm s}=S_{\rm s}/(\pi r_{\rm l}^2),$$

где $S_{\rm s}$ – эффективная площадь рассеяния. Если направление падающей волны и направление приема рассеянной волны произвольные, то коэффициент рассеяния называется двухпозиционным. Для случая падающей волны линейной поляризации двухпозиционный коэффициент рассеяния для основной поляризационной составляющей поля ($\phi = 0$) имеет вид

$$\sigma(\theta) = 4/b^2 \times \left\{ \sum_{n=1}^{\infty} \left\{ (-1)^n \frac{2n+1}{n(n+1)} \left[\tau_n(\theta) M_n - \pi_n(\theta) N_n \right] \right\} \right\}^2.$$

Известия вузов России. Радиоэлектроника. 2014. Вып. 6

				Таблица 2	
Образец —	Параметр модели $b = k_0 r_1$				
	1.1	2.35	6.28	12.57	
	Радиолокацио	нный коэффициент рас	сеяния σ_p	8	
Сфера без укрытия	3.5477	1.9675	1.0140	0.9037	
T3MKT-8	3.6278	2.0116	0.9977	0.8944	
T3MKT-8KH-Al ₂ O ₃	3.6446	2.0209	0.9940	0.8924	
ТЗМКТО-8К-ТЭАТ-МС	3.6302	2.0129	0.9972	0.8941	
Материал [8]	3.7033	2.0538	0.9786	0.8852	
	Попутны	й коэффициент рассеяні	ия о _п		
Сфера без укрытия	2.0368	6.8422	43.3353	166.0029	
T3MKT-8	2.1950	7.1054	44.2380	168.3625	
T3MKT-8KH-Al ₂ O ₃	2.2290	7.1616	44.4322	168.8741	
ТЗМКТО-8К-ТЭАТ-МС	2.1996	7.1128	44.2637	168.4298	
Материал [8]	2.3606	7.3843	45.2150	170.9634	

В случае $\theta = 0$ (направление наблюдения совпадает с направлением падающей волны) коэффициент рассеяния называется радиолокационным и определяется по (1). Если угол $\theta = 180^{\circ}$ (наблюдение ведется в направлении, противоположном направлению падающей волны), коэффициент рассеяния называется попутным.

Влияние покрытий на энергетические характеристики рассеяния. Расчет коэффициентов рассеяния проведен для значений b 1.1; 2.35; 6.28; 12.57. Также проведен расчет для сферы с покрытием из материала [8], обладающего относительной диэлектрической проницаемостью 15-5i и толщиной покрытия 5 мм. На рис. 2 в качестве примера показаны диаграммы рассеяния гладкой сферы (сплошная линия) и сферы с покрытием

[8] (штриховая линия) при x = 1.1. В табл. 2 приведены значения радиолокационного и попутного коэффициентов рассеяния для гладкой сферы, сферы с покрытиями материалами, указанными в табл. 1, и с покрытием [8].

В результате математического моделирования установлено, что при указанных значениях $b = k_0 \eta$ для гладкой сферы и сферы с покрытием относительная разница в значениях радиолокационного коэффициента рассеяния не превышает 10 %, а для попутного – 20 %, причем с ростом *b* эта разница уменьшается.

В дальнейшем представляет интерес исследовать влияние эффекта выгорания (уноса) ТЗП на характеристики рассеяния.

СПИСОК ЛИТЕРАТУРЫ

 Львова Л. А. Радиолокационная заметность летательных аппаратов, Снежинск: Изд-во РФЯЦ–ВНИИТФ, 2003. 232 с.

2. Койтов С. А., Мельников В. Н. Разработка наноструктурированного полимерного композиционного материала, армированного тугоплавким наполнителем // Вестн. Концерна ПВО "Алмаз-Антей". 2013. № 1(9). С. 64–69.

3. Кобак В. О. Радиолокационные отражатели М.: Сов. радио, 1975. 248 с.

4. Панченко Б. А. Рассеяние и поглощение электромагнитных волн неоднородными сферическими телами. М.: Радиотехника, 2012. 292 с.

B. A. Panchenko, A. M. Musin

Ural federal university n. a. the first President of Russia B. N. Yeltsin

The influence of heat-resisting coating convex solid on radar characteristics

Dispersion ratio for sphere in diameter of 500 mm with the heat-shielding covering, which approximate an aircraft, was calculated. Results for 4 values of the electric sizes of sphere are presented.

Diffraction, protective shelter, radar-tracking characteristics, protective materials

Статья поступила в редакцию 7 октября 2014 г.

5. Фелсен Л., Маркувиц Н. Излучение и рассеяние волн: в 2 т. Т. 1. М.: Мир, 1978. 547 с.

6. Абрамовиц М., Стиган И. Справочник по специальным функциям. М.: Наука. 1979. 830 с.

7. Хёнл Х., Мауэ А., Вестпфаль К. Теория дифракции. М.: Мир. 1964. 333 с.

8. Chakravarty S., Mittra R., Williams N. R. Application of a microgenetic algorithm (MGA) to the design of broadband microwave absorbers using multiple frequency selective surface screens buried in dielectrics // IEEE Trans. on ant. and prop. 2002.Vol. 50, № 3. P. 284–296.